If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-16x+16=0
a = -4; b = -16; c = +16;
Δ = b2-4ac
Δ = -162-4·(-4)·16
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{2}}{2*-4}=\frac{16-16\sqrt{2}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{2}}{2*-4}=\frac{16+16\sqrt{2}}{-8} $
| 2x+35=3x+36 | | 2x+52=4x+14 | | P(x)=(60x-0.3x^2)-(5x+15) | | Z+2i=0 | | 1/2x+5=-3x+2 | | 37+4k=5 | | 180=123+(x+2x) | | 8p+43=19 | | (3x)(x)=58 | | 15a^2-9a=0 | | x-5)(7x-21)=0 | | 8n(5n+13=7 | | 2x-5x+7=2x-2 | | 180=4x-1+5x-13+5x-13 | | 180=4x-1+4x-1+5x-13 | | Y=3.1x+35 | | 65+x=103 | | 81=12t+5t^2 | | 16+8a=-4a+-32 | | 2x-30=1x+10 | | 180=5x-7+5x-7+2x+62 | | 2x^2+5=-45 | | 1234567890x+1234567890x=100000000000000 | | 7(2a+3)21=100+40 | | 5+x-3=7-2x | | 2n^2=-288 | | 3+14-12c=56 | | x=1/3-11+5 | | 1/11-1/14=1/v | | x=1/3-6 | | 0.05x+7.5=x | | 6x+2(4x-1=25 |